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THE FORMATION OF ZERO FREQUENCY INTERNAL'WAVES DURING FREE CONVECTION 

IN A TEMPERATURE-STRATIFIED LIQUID* 

A.V. KISTOVICH and YU.D. CHASHECHKIN 

It is shown, as a result of an analysis of the equations of free 
convection in a temperature-stratified medium (TSM), that internal waves 
of zero frequency are formed when a thermal source is included together 
with a floating flare. The wavelength of these waves is calculated and 
the parameters of the transition processes are determined. 

Zero-frequency internal waves, which are observed experimentally /l/, are an important 
element of convective flows which are generated by thermal sources in liquids with salinestrati- 
fication. Only the parameters of a flare which floats above a localized source of heat have 
been calculated in a TSM /2/. There is interest in the possibility of the existence of zero- 
frequency internal waves which are excited by the thermal source in a TSM and in determining 
their parameters. 

1. PomZation of the problem. The linearized system of convection equations in the TSM 
in a cylindrical system of coordinates at the origin of which a thermal source with a power 
P is located and where the gravitational vector g is directed opposite to the z-axis has the 
form 

P 6 (2) 8 (rj 
aT’/at + V.(UT, (g) = XAT’ + - 2nr 8 (t) 

“$0 
UP a (2) 6 (r) 

wat-~ov+T, (I)) + hV.u = ---B(t) 
=P 

I’ = PO (1 - 0, r = T, (2) + T’, T, (a) = To (1 + z/(aT,A)) 

Here u is the velocity of the medium, p is the pressure after subtracting the hydro- 
static pressure, J', To (.) and 2" are the total, stratifying and excess temperatures, To and 
PO are the temperature and density of the medium at the level z=O,p is the density of the 
medium, a, 1 and v are the coefficients of thermal expansion, the thermal diffusivity and 
the kinematic viscosity, e, is the heat capacity of the medium at constant pressure and A 
is the temperature stratification scale. The initial and boundary conditions, taken at 
infinity and the conditions on the functions u,p and T' are homogeneous. 

The velocity field, which is axially symmetric can be represented in the form 

u=v+w, v=-Vh, w,=-aaqar. w,=-ayylaz 

A$J++O, A/-&(+) 

Here, u+ and W, are the radial and vertical components of the solenoidal part of the 
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velocity and h,Q, and Y are unknown functions of the coordinates and time. 
The components of the total velocity vector can be written in the form 

Substitution of (1.2) and (1.1) enables one to reduce the initial system to the system 

(I-3) 

By applying a Fourier-Bessel transformation of the form 

to the first equation of (1.3), where I, is a zero order Bessel function of the first kind, 
we find the image of the function f(r,z,t) and, by applying the inverse transformation, we 
get 

f (r* 2.4 = -& 
m i-m (d(w)- i Vp (l/o)) exp(iot- ikq)dodk, 

SOS kr (19 - i (v + x) kko - vxkr - N’k,‘/k’) } ’ (1.4) 

0 -= 
k,Jo (k/) dkr; k= = kra + k,” 

The properties of the function VP WeI are defined by the relationship 

+Y 

s 
-m 

9LY)Vp(~)do=~ff~~(~~do+r~dw) 

-co e 

After integration with respect to the variable O, (1.4) takes the form 

f (7, 6 0 = (W-v (IO + I+ + I_) (1.5) 

- +- 

SIS p* (k,s kz, t) 0%~ (- ikzz) dkz klJo (k,r) dkr 
0 -Da 

F* (km kz, t) = (i (Y + x) kY2 & M)-‘M-’ exp (-(Y + x) k*t/2 f iMt) 

M = (Nak,=lklk” - (v - x)’ k4/4)‘/, 

2. Asymptotic estimate of I*. To estimate the behaviour of I* at large values of the 
time t the integrand is first reduced to a form which is convenient for the application of 
asymptotic methods. In order to do this, a coordinate transformation of the form 

k,' = n'p'Q'1" (p, q), k= = 1" (P, e) = P*/X + ?V, 

tl = (v - X)/W W”) 

is carried out in the region of ImM=O while the transformation 

kr= = y*H (I, y). k’ = Y’ (1 - H 6% I)). H (2. Y) = (z” + @ - ~)‘yY4)lN’ 

is used in the region ImM#O, where p, q, 3c and y are new variables. As a result of this, 
we get 

exp (- (v + x) Y’+ f ia) B* (I. Y) dz dy 

0 0 



A (P. d = 
ccs (IV (p, 9) (I - rlrPW") Jo MlPQV (Pf q)) Pll 

v (P. n) (i - rl'PW"' 

Bf (29 I) = 
cm. (2s (1 - H (z. srft”’ Jo (rd’* (G uff 

(i (v + x) rv f 4 (I- If (z* UN 
L ‘* 

k = +, &_F 1, a = (A'/@- x))"', b(q)= q&I’* 

e (q) = (tlq)“, x (g) = (nn - (v - %)%‘14)“~ 

Two different oscillating functions, a cosine and a Bessel function, occur in the inte- 
grand of (2.1). On account of this, relationships (2.1) determine the different asymptotic 
behaviour of Ilt in the different regions of space and time. 

In the case of the integrals of A(P, n) it is advisable to introduce "small" and "large" 
distances which are defined by the relationships 

r, 2 are "smalL" if r, p ==%z W 

r, 2 are "large" if i-, z >> vut 

The following relationships hold in the case of Bf: 

r, 2 are "small" if r, a& (v f $9 at!z; 

r, 2 are "large" if r, I> (v + x) atifi 

By using the method of steepest descent and the stationary phase method 141 and the 
representation (1.2), it is possible to obtain estimates for the components of the velocity 
u in the different spatial regions. 

ur - Q (--Drs + w (v, x, N) em- exp (--xR) J, (XI?)) 

% - %Q fD+ + w @. X, N) X&+t-’ (1 f d)-*‘* exp (--xR) (J, (SC, R) - Xi (%R)/@R))) 

D = (v - ~)‘N-‘t-%“‘~-~/4 

(2.2) 

N (1 + 8’) c+----) ‘1. 

4vx , R’=r’+z”, EE + 

Here, W(v, XV N) is a function of v.x and N. 
The first term in (2.2) is only important in the case of subcritical flow regimes in 

the region 7, .a 4 Xt (1/2N/(v#')V'. The second term together with the asymptotic formulae for I, 
describe the transition process of the formation of zero-frequency waves. Both terms in 
(2.2) decay rapdily with time. 

The region of "small" radial and "large" vertical distances rQ@u, z>(vf X)t a/@ 
at - rz-‘Q (t) 008 (az) 

zbz - -2Q (t) ci (44) (2.3) 

hQ 
Q (0 = (Nq (v - X))‘l’ ( -L erp (- vart) - eql (- X4%)) 

v + x 

The structure of the flow which is described by relationships (2.3) consists of segments 
of stationary cells inclined at an angle to the z-axis which are repeated along the vertical 
with a period 2na. The intensity of the velocity field in the cells decreases with height 
and decays expontialfy with time. Rt the same time, the velocities on the boundaries of 
adjacent cells are in opposite directions. 

Numerical calculations of the vertical size H of a cell gave the following results. 

Rir: v= 1.3 so_* t$fs, X= 2 xiO-sm'/s,iv= 0.01 Hz, X=2.3x W1m. 

Water: ,,=iO-a mz/s, x= 1,5x'~O-?m'/s, N= 0.01 HZ, H=~X~O-"III. 

T)ls region of "Zwge" radial and "smatt" vertical distances rS_(v+xft~. =<@a 

ur-j$(c;q-;)* +(q(wp ~"p(-(v+x)411)1.(DT)) (2.4~ 
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The flow which is described by relationships (2.4) is of low intensity, has a high order 
of decrease in the radial direction, and decays rapidly with time. This is due to the fact 
that, in this region of space, we did not succeed in obtaining either substantial overheating 
or a zero-frequency wave. 

3. Structure of the zero frequency wves. The structure of the flow of the zero fre- 
quency waves is described by the integral IO. Its asymptotic behaviour is investigated at 
large distances from the heat source along a selected direction which is characterized by the 
magnitude of y, the tangent of the angle to the horizontal, and R, the distance from the 
source. 

The method of steepest descent /4/ and the representation (1.21 yield estimates of the 
radial and vertical components of the velocity u when 

R > (ZqIN”)“* (3.4) 
PI. - U (y, R) sin (A - n/4), u. - -_yU (v, R) cm (A - n/4) 

Zero-frequency oscillations are also generated by the function h which describes the 
potential part of the velocity. The complex expression which was calculated is not presented 
here since the ratio of the potential and solenoidal parts of the velocity in the aymptotic 
region is proportional to YX (N2/(4v~))'ld/p 4 1 and the contribution from the function h can be 
neglected. 

Relations (3.11 describe zero-frequency waves (stationary waves /5/j, the nature of 
which is determined by the combined action of kinetic phenomena and the effect of buoyancy. 
The dependence of the emission wavelength on Y, x and N is a consequence of this: 

h = 2n (4vx (1 + yr)/N+ 

The form of relationships (3.1) indicates that the energy density flux vector p = pu(~'/Z+ 
CJ + P/P) attains its greatest absolute value when y is close to zero, which determines 
an almost horizontal propagation of the zero-frequency internal waves at large distances from 
the source. 

It follows from (3.11 that the trajectories of the particles participating in the zero- 
frequency oscillations are ellipses with an eccentricity which increases on passing farther 
away from the source while the inclination of the semimajor axis to the horizontal tends to 
zero. 

Relationships (3.1) determine the high sensitivity of the characteristics of these waves 
to the parameters of the medium. For instance, the waves decay more rapidly and their wave- 
length increases in the region with more pronounced temperature gradients. It also follows 
from (3.1) that, on passing through the boundary of separation of two regions with different 
temperature gradients, the zero-frequency waves are partially reflected and break up, which 
is indicative of their instability with respect to local superheating. 

In practical physical situations, when the powers of the thermal source are greater than 
the critical power, convective motion of the medium occurs close to the heat source, as a 
result of which the structure of the flow cannot be described by Eqs.(l.3). Meanwhile, this 
convection region is bounded, and beyondits confines the solutions of the linearized problem 
are applicable, as has also been considered in /6/. 

Under subcritical flow conditions, that is, when the power of the source is less than 
the critical power /l/, the solutions of (1.3) are applicable over the whole of the space. 
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